Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Viruses ; 15(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992312

RESUMO

Bacteriophages have been identified as a potential treatment option to treat lung infection in the context of antibiotic resistance. We performed a preclinical study to predict the efficacy of delivery of bacteriophages against Pseudomonas aeruginosa (PA) when administered via nebulization during mechanical ventilation (MV). We selected a mix of four anti-PA phages containing two Podoviridae and two Myoviridae, with a coverage of 87.8% (36/41) on an international PA reference panel. When administered via nebulization, a loss of 0.30-0.65 log of infective phage titers was measured. No difference between jet, ultrasonic and mesh nebulizers was observed in terms of loss of phage viability, but a higher output was measured with the mesh nebulizer. Interestingly, Myoviridae are significantly more sensitive to nebulization than Podoviridae since their long tail is much more prone to damage. Phage nebulization has been measured as compatible with humidified ventilation. Based on in vitro measurement, the lung deposition prediction of viable phage particles ranges from 6% to 26% of the phages loaded in the nebulizer. Further, 8% to 15% of lung deposition was measured by scintigraphy in three macaques. A phage dose of 1 × 109 PFU/mL nebulized by the mesh nebulizer during MV predicts an efficient dose in the lung against PA, comparable with the dose chosen to define the susceptibility of the strain.


Assuntos
Bacteriófagos , Podoviridae , Animais , Respiração Artificial , Macaca , Nebulizadores e Vaporizadores , Myoviridae , Pulmão , Aerossóis
2.
Br J Pharmacol ; 178(18): 3829-3842, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33974271

RESUMO

BACKGROUND AND PURPOSE 255: Pseudomonas aeruginosa is a main cause of ventilator-associated pneumonia (VAP) with drug-resistant bacteria. Bacteriophage therapy has experienced resurgence to compensate for the limited development of novel antibiotics. However, phage therapy is limited to a compassionate use so far, resulting from lack of adequate studies in relevant pharmacological models. We used a pig model of pneumonia caused by P. aeruginosa that recapitulates essential features of human disease to study the antimicrobial efficacy of nebulized-phage therapy. EXPERIMENTAL APPROACH: (i) Lysis kinetic assays were performed to evaluate in vitro phage antibacterial efficacy against P. aeruginosa and select relevant combinations of lytic phages. (ii) The efficacy of the phage combinations was investigated in vivo (murine model of P. aeruginosa lung infection). (iii) We determined the optimal conditions to ensure efficient phage delivery by aerosol during mechanical ventilation. (iv) Lung antimicrobial efficacy of inhaled-phage therapy was evaluated in pigs, which were anaesthetized, mechanically ventilated and infected with P. aeruginosa. KEY RESULTS: By selecting an active phage cocktail and optimizing aerosol delivery conditions, we were able to deliver high phage concentrations in the lungs, which resulted in a rapid and marked reduction in P. aeruginosa density (1.5-log reduction, p < .001). No infective phage was detected in the sera and urines throughout the experiment. CONCLUSION AND IMPLICATIONS: Our findings demonstrated (i) the feasibility of delivering large amounts of active phages by nebulization during mechanical ventilation and (ii) rapid control of in situ infection by inhaled bacteriophage in an experimental model of P. aeruginosa pneumonia with high translational value.


Assuntos
Bacteriófagos , Terapia por Fagos , Pneumonia , Infecções por Pseudomonas , Fagos de Pseudomonas , Animais , Camundongos , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa , Respiração Artificial , Suínos
3.
Front Immunol ; 9: 2259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323819

RESUMO

The neonatal Fc receptor (FcRn) is responsible for the recycling and transcytosis of IgG and albumin. FcRn level was found altered in cancer tissues and implicated in tumor immunosurveillance and neoplastic cell growth. However, the consequences of FcRn down-regulation in the anti-tumor immune response are not fully elucidated. By using the B16F10 experimental lung metastasis model in an FcRn-deficient microenvironment (FcRn-/- mice), we found lung metastasis associated with an abnormal natural killer (NK) cell phenotype. In FcRn-/- mice, NK cells were immature, as shown by their surface marker profile and their decreased ability to degranulate and synthesize interferon γ after chemical and IL-2 or IL-12, IL-15 and IL-18 activation. These new findings support the critical role of FcRn downregulation in the tumor microenvironment in anti-tumor immunity, via NK cell maturation and activation.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica/patologia , Receptores Fc/metabolismo , Microambiente Tumoral , Animais , Degranulação Celular , Diferenciação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estatísticas não Paramétricas , Transcitose
4.
Front Immunol ; 8: 123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243234

RESUMO

Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2-/- mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2-/- mice were infected with Streptococcus pneumoniae. FHL2-/- mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2-/- mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.

5.
Expert Opin Drug Deliv ; 14(8): 959-972, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27776446

RESUMO

INTRODUCTION: Bacterial respiratory tract infections (RTIs) are increasingly difficult to treat due to evolving antibiotic resistance. In this context, bacteriophages (or phages) are part of the foreseen alternatives or combination therapies. Delivering phages through the airways seems more relevant to accumulate these natural antibacterial viruses in proximity to their bacterial host, within the infectious site. Areas covered: This review addresses the potential of phage therapy to treat RTIs and discusses preclinical and clinical results of phages administration in this context. Recent phage formulation and aerosolization attempts are also reviewed, raising technical challenges to achieve efficient pulmonary deposition via inhalation. Expert opinion: Overall, the inhalation of phages as antibacterial treatment seems both clinically relevant and technically feasible. Several crucial points still need to be investigated, such as phage product pharmacokinetics and immunogenicity. Furthermore, given phage-specific features, appropriate regulatory and manufacturing guidelines will need to be defined. Finally, randomized controlled clinical trials should be carried out to establish phage therapy's clinical positioning in the antimicrobial arsenal against RTIs.


Assuntos
Infecções Bacterianas/terapia , Terapia por Fagos , Infecções Respiratórias/terapia , Administração por Inalação , Animais , Bacteriófagos , Humanos
6.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L664-75, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496898

RESUMO

Cystic fibrosis (CF) is an inherited disease associated with chronic severe lung inflammation, leading to premature death. To develop innovative anti-inflammatory treatments, we need to characterize new cellular and molecular components contributing to the mechanisms of lung inflammation. Here, we focused on the potential role of "transient receptor potential vanilloid-4" (TRPV4), a nonselective calcium channel. We used both in vitro and in vivo approaches to demonstrate that TRPV4 expressed in airway epithelial cells triggers the secretion of major proinflammatory mediators such as chemokines and biologically active lipids, as well as a neutrophil recruitment in lung tissues. We characterized the contribution of cytosolic phospholipase A2, MAPKs, and NF-κB in TRPV4-dependent signaling. We also showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids, i.e., four natural lipid-based TRPV4 agonists, are present in expectorations of CF patients. Also, TRPV4-induced calcium mobilization and inflammatory responses were enhanced in cystic fibrosis transmembrane conductance regulator-deficient cellular and animal models, suggesting that TRPV4 is a promising target for the development of new anti-inflammatory treatments for diseases such as CF.


Assuntos
Células Epiteliais Alveolares/metabolismo , Fibrose Cística/metabolismo , Canais de Cátion TRPV/fisiologia , Células A549 , Animais , Sinalização do Cálcio , Fibrose Cística/imunologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley
7.
Oncotarget ; 7(34): 54415-54429, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27384673

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Although the recommended tumor, node and metastasis (TNM) classification and stage determination are important to select therapeutic options for patients with non-small cell lung carcinoma (NSCLC), additional molecular markers are required to indicate the prognosis, in particular within a specific stage, and help with the management of patients.Because neonatal Fc receptor (FcRn) has recently been involved in colon cancer immunosurveillance, we measured its expression in non-cancerous and NSCLC lung tissues and evaluated its prognostic value in overall survival for patient with NSCLC. FcRn expression was determined at both mRNA and protein levels on cancerous and adjacent non-cancerous tissues from 80 NSCLC patients. In NSCLC, FcRn was mainly found in resident and tumor infiltrating immune cells. The corresponding mRNA and protein were significantly less abundant in lung tumor than non-cancerous tissue. Moreover, analysis of our cohort and datasets from the public data bases show that FCGRT mRNA down-regulation is a robust and independent, unfavorable predictive factor of NSCLC patient survival. We conclude that FCGRT mRNA expression may be a useful additional marker for immunoscoring, reflecting tumor immune system, and help in the decision-making process for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/mortalidade , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias Pulmonares/mortalidade , Receptores Fc/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Regulação para Baixo , Feminino , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Pulmão/química , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/análise , Receptores Fc/análise
9.
Eur Respir J ; 46(3): 771-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250498

RESUMO

Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as ß-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations.


Assuntos
Células Epiteliais/enzimologia , Imunidade Inata/efeitos dos fármacos , Neutrófilos/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Receptores de Interleucina/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Humanos , Imunidade Inata/fisiologia , Camundongos , Neutrófilos/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina/imunologia , Amostragem , Sensibilidade e Especificidade , Fumar/efeitos adversos , Estatísticas não Paramétricas , beta-Defensinas/farmacologia
10.
Nat Genet ; 47(9): 969-978, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214591

RESUMO

The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.


Assuntos
Estudos de Associação Genética , Animais , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anotação de Sequência Molecular , Mutação , Fenótipo
11.
J Immunol ; 187(9): 4826-34, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957146

RESUMO

Precise control of the LPS stimulation in the lung modulates inflammation and airway hyperresponsiveness involving the well-known TLR4/NF-κB pathway. As a consequence, the expression and secretion of proinflammatory cytokines is tightly regulated with the recruitment of neutrophils. Changes in the LPS-induced responses have been observed in the Prmt2-Col6a1 monosomic model, suggesting the presence of dosage-sensitive genes controlling LPS pathway in the mouse. In this article, we report that the Prmt2 regulates the LPS-induced lung responses in lungs and macrophages. We demonstrate that Prmt2 gene dosage influences the lung airway hyperresponsiveness, the recruitment of neutrophils, and the expression of proinflammatory cytokines, such as IL-6 and TNF-α. In addition, Prmt2 loss of function also altered the nuclear accumulation of NF-κB in stimulated macrophages. Prmt2 should be considered as a new member of the NF-κB pathway controlling LPS-induced inflammatory and lung responses in a dosage-dependent manner, certainly through regulating nuclear accumulation of NF-κB as shown already in fibroblasts.


Assuntos
Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/administração & dosagem , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Metiltransferases/fisiologia , Animais , Colágeno Tipo VI/deficiência , Colágeno Tipo VI/genética , Colágeno Tipo VI/fisiologia , Relação Dose-Resposta Imunológica , Triagem de Portadores Genéticos/métodos , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/fisiologia , Proteína-Arginina N-Metiltransferases , Transdução de Sinais/genética , Transdução de Sinais/imunologia
12.
PLoS Pathog ; 7(7): e1002134, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750677

RESUMO

The parainfluenza viruses (PIVs) are highly contagious respiratory paramyxoviruses and a leading cause of lower respiratory tract (LRT) disease. Since no vaccines or antivirals exist, non-pharmaceutical interventions are the only means of control for these pathogens. Here we used bioluminescence imaging to visualize the spatial and temporal progression of murine PIV1 (Sendai virus) infection in living mice after intranasal inoculation or exposure by contact. A non-attenuated luciferase reporter virus (rSeV-luc(M-F*)) that expressed high levels of luciferase yet was phenotypically similar to wild-type Sendai virus in vitro and in vivo was generated to allow visualization. After direct intranasal inoculation, we unexpectedly observed that the upper respiratory tract (URT) and trachea supported robust infection under conditions that result in little infection or pathology in the lungs including a low inoculum of virus, an attenuated virus, and strains of mice genetically resistant to lung infection. The high permissivity of the URT and trachea to infection resulted in 100% transmission to naïve contact recipients, even after low-dose (70 PFU) inoculation of genetically resistant BALB/c donor mice. The timing of transmission was consistent with the timing of high viral titers in the URT and trachea of donor animals but was independent of the levels of infection in the lungs of donors. The data therefore reveals a disconnect between transmissibility, which is associated with infection in the URT, and pathogenesis, which arises from infection in the lungs and the immune response. Natural infection after transmission was universally robust in the URT and trachea yet limited in the lungs, inducing protective immunity without weight loss even in genetically susceptible 129/SvJ mice. Overall, these results reveal a dichotomy between PIV infection in the URT and trachea versus the lungs and define a new model for studies of pathogenesis, development of live virus vaccines, and testing of antiviral therapies.


Assuntos
Pulmão/virologia , Infecções por Respirovirus/transmissão , Doenças dos Roedores/transmissão , Vírus Sendai/fisiologia , Traqueia/virologia , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/virologia , Linhagem Celular , Progressão da Doença , Luciferases/metabolismo , Medições Luminescentes , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/patologia , Doenças dos Roedores/imunologia , Doenças dos Roedores/patologia , Traqueia/patologia
13.
Curr Genomics ; 11(6): 470-80, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21358991

RESUMO

Changes in the number of chromosomes, but also variations in the copy number of chromosomal regions have been described in various pathological conditions, such as cancer and aneuploidy, but also in normal physiological condition. Our classical view of DNA replication and mitotic preservation of the chromosomal integrity is now challenged as new technologies allow us to observe such mosaic somatic changes in copy number affecting regions of chromosomes with various sizes. In order to go further in the understanding of copy number influence in normal condition we could take advantage of the novel strategy called Targeted Asymmetric Sister Chromatin Event of Recombination (TASCER) to induce recombination during the G2 phase so that we can generate deletions and duplications of regions of interest prior to mitosis. Using this approach in the mouse we could address the effects of copy number variation and segmental aneuploidy in daughter cells and allow us to explore somatic mosaics for large region of interest in the mouse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...